Assignment 6

No need to hand in any problem.

- 1. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R} :
 - (a) $[1,2) \cup (2,5) \cup \{10\}.$
 - (b) $[0,1] \cap \mathbb{Q}$.
 - (c) $\bigcup_{k=1}^{\infty} (1/(k+1), 1/k).$
 - (d) $\{1, 2, 3, \dots\}.$
- 2. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R}^2 :
 - (a) $R \equiv [0,1) \times [2,3) \cup \{0\} \times (3,5).$
 - (b) $\{(x,y): 1 < x^2 + y^2 \le 9\}.$
 - (c) $\mathbb{R}^2 \setminus \{(1,0), (1/2,0), (1/3,0), (1/4,0), \cdots \}.$
- 3. Describe the closure and interior of the following sets in C[0, 1]:
 - (a) $\{f: f(x) > -1, \forall x \in [0,1]\}.$
 - (b) $\{f: f(0) = f(1)\}.$
- 4. Let A and B be subsets of (X, d). Show that

 $\overline{A\cup B}=\overline{A}\cup\overline{B}$.

Is it true that

$$\overline{A \cap B} = \overline{A} \cap \overline{B} ?$$

- 5. Show that $\overline{E} = \{x \in X : d(x, E) = 0\}$ for every non-empty $E \subset X$.
- 6. Let $E \subset (X, d)$. Show that E° is the largest open set contained in E in the sense that E° is open and $G \subset E^{\circ}$ whenever $G \subset E$ is open.
- 7. Let *E* be a subset of (X, d). Prove the relation $E^{\circ} = X \setminus \left(\overline{X \setminus E}\right)$.